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Abstract —Introducing a new anafysis method for the nonuniform trans-

mission fine, this paper shows equivalent transformations between a circuit

consisting of a cascade connection of a lumped Richards section, an ideaf

transformer, and a distributed transmission fine sod one consisting of a

cascade connection of a class of a nonuniform transmission line, a lumped

Richards section, and an ideaf transformer. Characteristic impedance

distributions of these nonuniform transmission fines are expressed as

hyperbolic or trigonometric functions. It is quite difficult to find the exact

network functions of nonuniform transmission lines from the telegraph

equation, but by using the eqrdvafent transformation deseribed it becomes

possible to obtain exact network functions of a class of nonuniform

transmission lines.

I. INTRODUCTION

P REVIOUSLY a powerful analysis method for nonuni-

form transmission lines was used to derive equivalent

transformations for mixed lumped and distributed circuits

[5]-[8]. This paper shows a new type of equivalent trans-

formation. First we show an equivalent transformation for

a circuit consisting of a cascade connection of a distributed

Richards section, an ideal transformer, and a uniform

transmission line (unit element). By applying this equiv-

alent transformation n times and considering the limiting

case of n ~ co, the transformed circuit consists of a cascade

connection of a nonuniform transmission line, a lumped

Richards section, and an ideal transformer. The character-

istic impedance distribution of this nonuniform transmis-

sion line is expressed as a hyperbolic function of distance

x. Then, we apply this technique to a circuit containing an

imaginary instead of a real gyrator, and obtain the equiv-

alent circuit of another type of nonuniform transmission

line whose characteristic impedance distribution is ex-

pressed as a trigonometric function of distance x. Next, we

treat the equivalent transformation of a circuit consisting

of a lumped Richards section and a nonuniform transmiss-

ion line. Characteristic impedance distributions of the

newly obtained nonuniform transmission lines are ex-

pressed as a function of the characteristic impedance dis-

tribution and the elements of the chain matrix (A, B, C, D)

of the original nonuniform transmission line. By using

these equivalent transformations, exact network functions

of a class of nonuniform transn&sion lines can be ob-

tained without solving the telegraph equation.

II. EQUIVALENT TRANSFORImTION FOR A LUMPED

RICHARDS SECTION AND A UNIFORM

TRANSMISSION LINE

The Richards section is one of the important circuits for

cascade network synthesis [9]. [n the case of distributed

circuits, the distributed Richards section is constructed of

a gyrator and a single shorted stub, and its chain matrix is

given as follows:

H
PR—

[q=+ ; P“ (1)
1+— -— —

where R ~ is the gyration ratio of the gyrator, R o/u is the

characteristic impedance of the single shorted stub, and p

is the Richards variable.

We consider a circuit consisting of a cascade connection

of a distributed Richards section, an ideal transformer,

and a unit element, shown in Fig. l(a), where WO is the

characteristic impedance of the unit element and $0 is the

turns ratio of the ideal transformer. The distributed

Richards section can be transformed to the output port as

shown in Fig. l(b). The formulas for this transformation

are given as follows:

(2)
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Fig. 1. Equivalent transformation for distributed Richards section. (a)

Original. (b) Equivalent.
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Fig. 2. N-times equivalent transformations. (a) Original. (b) Equivalent.

This transformation can be applied n times (n an in-

teger) to the circuit shown in Fig. 2(a), where the line

lengths of the unit elements and the single shorted stub are

l/n. The transformed circuit is one consisting of a cascade

connection of cascaded transmission lines, the distributed

Richards section, and an ideal transformer as shown in

Fig. 2(b).

The characteristic impedance Z, of a unit element and

the element values of the circuit transformed the i th time

are given as follows:

W.
z,=— (i=l,2,..., n)

% -1$,
(6)

(1+0) ’+(1 -0) ’+6RO+ (1+0) ’-(1-0)’
W.

(l+.) ’:(l-O)’ (1+0) ’-:I-O)’4:R0
W.+

2 2

(7)

~ = q$oRo
n

% “
(8)

By considering the limiting case of the above transfor-

mation (n -+ co), we can discuss the equivalent transforma-

TABLE I

EQUIVALENT TRANSFORMATION FOR THE CIRCUIT CONSISTING OF
LUMPED RICHARDS SECTION, IDEAL TRANSFORMER,

AND UNIFORM TRANSMISSION LINE

Orlglna.1 Clr.mt EqUi=lent C,r.u.t

R

tion for the mixed lumped and distributed circuit [5]-[8].

Set
00

*=—.
n

(9)

By proceeding to the limit n + co, the driving point im-

pedance of the single shorted stub shown in Fig. 2(a) yields

‘in=:+. (’:tan:)=’:’z=’::” ’10)

where ~ is the phase constant, u is the angular frequency,

and u is the velocity of light; i.e., the single shorted stub

becomes a lumped inductor. The coordinate x of the ith

unit element of the transformed circuit is given as follows:

~=il (i=l,2,..., n). (11)
n

By substituting (9) and (11) into (6) and (7), we obtain

the following relations as n ~ co:

Wo
lim @i=—

n+m q50Ro

(JOx q)x
&Rocosh ~ + W. sinh —

Uox ~:x =+(x)
Wocosh — + &R. sinh —

1 1

W.
lim Zi = —

= (+ORO)2

n~cc +(X)2 JKo

(12)

“[
Uox

)
Uox 2

Wocosh — + @~Rosinh —
1 1
uox Uox -z(x).

&Rocosh ~ + W. sinh ~

(13)

Z(x) is the characteristic impedance distribution of the

nonuniform transmission line derived. That is, if the trans-

formation shown in Fig. 1 is applied n times as n ~ cc, the

characteristic impedance distribution of the transformed

circuit transforms from a discrete function of distance x

into a continuous function. Under these conditions the

element values of the Richards section of the transformed

circuit become

+=+(X)lX=l (14)

(15)
@

./

In the limiting case we obtain the equivalent transforma-

tion shown in Table I. By using this we can show the
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Fig. 3,

z(x)

(a)

Equivalent circuit of nonuniform

(b)

transmission line 2(x) in (13). (a) Nonuniform transmission lime. (b) Equivalent.,,
circuit.

equivalent circuit of a nonuniform transmission line Z(x) in (13) as shown in Fig. 3. Network functions of this

nonuniform transmission line can be easily obtained from the equivalent circuit. The chain matrix is given as follows:

1
[q]=[: g]= [1

~,B,
V2C’D’

()
S2- u~—

1

(16)

(17)

(18)

(19)

(20)

where s is the complex angular frequency.

The above transformation technique may also be applied to a circuit that has the same topclogy as that of Fig. 2 but

with the real gyrator R o and u changed to an imaginary gyrator jR o and ja, respectively. l[n a circuit containing an

imaginary gyrator, a Richards section and an ideal transformer can be transformed to the output port by changing the

characteristic impedances of the unit elements. The element values of the transformed circuit are given as follows:

W.
z,=— (i=l,2,..., n)

‘#’i- l+i

(l+ju)’+(l- ja)’j@iRo+ (l+jti)i-(l-jti)’

W. 2 2
W.

$i=__..L.
j+oRO (l+ju)i+(l–ju)iw + (l+jti)z-(l-jti)’ -

2
0

2
j&R o

(21)

(22)

(23)
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Fig. 4. Equivalent circuit of nonuniform transmission line Z(x) in (26).

Here, we set

jcd= J+. (24)

By substituting (11) and (24) into (21) and (22) and

proceeding to the limit n ~ m, we obtain

6J~x U)ox
~. r#r~RoCOS—+ WOsin —

q(x)= lim @,=—
1 1

Uox
+ORO wo~os ~ –

@ox
n+cc q5~Rosin ~

(25)

W.
Z(x) = lim Z,=—

n-cc +(X)2

[

+)x

)
(.+)x ‘

_ (@oRo)2‘Ocos1 ‘:Rosiny . (26)

——

—

W. 6JOX (.JOx
@~Rocos ~ + Wosin y

The cascaded transmission lines become nonuniform

transmission lines with characteristic impedance distribu-

tion Z(x).

Under these conditions, the single shorted stubs become

lumped inductors and the element values of the trans-

formed circuit are given by

+=+(X)lX=l (27)

R= ’+ORO

4“
(28)

Finally we obtain the equivalent circuit of the nonuniform

transmission line Z(x) in (26) as shown in Fig. 4.

111, EQUIVALENT TRANSFORMATION FOR A LUMPED

RICHARDS SECTION AND A NONUNIFORM

TRANSMISSION LINE

The circuit consisting of a distributed Richards section,

an ideal transformer, and cascaded transmission lines is

shown in Fig. 5(a). Here we denote the chain matrix of the

cascaded transmission lines as follows:

[

L(P) %(P)
= C.(P) ‘*(P) 1

where p is the Richards variable.

(29)

J (a)

---

w
n

---

(b)

Fig. 5. N-times equivalent transformations. (a) Original. (b) Equivalent.

By applying the equivalent transformation shown in Fig.

1 to this circuit, we obtain the equivalent circuit shown in

Fig. 5(b). Element values of the circuit transformed i

times, shown in Fig. 5(b), are given by

1 @o~/(P)+MP)—. (i=l,2,..., n)
“= $ORO Ai(P)+@~R&,(p) ~=o

(30)

w
z,=-

‘+,- 1+,
(i=l,2,..., n) (31)

(32)

Here the turns ratio ~, of an ideal transformer is expressed

as a function of elements of the chain matrix, with p in

(29) replaced by u.

Then by using (9) and (11) and proceeding to the limit

n * co, the distributed Richards sections and cascaded

transmission lines of Fig. 5 become equal to the lumped

Richards sections and nonuniform transmission lines

shown in Fig. 6. The characteristic impedance distribution

2(x ) and the element values + and R of the transformed

circuit shown in Fig. 6(b) are obtained as follows:

w(x)
z(x)=—

+(X)2
(33)

+(x)=—”
@“R4u3+B(ud(34)+’:RO+o;)+d$l?oc(.o;)

+=+(X)lX=l R = @oRo/$ (35)

where A(uox/l), B(uo.x/l), C(uox/l), and D(UoX/l) are
elements of the chain matrix of the original nonuniform

transmission line.
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Ro 4-———!.———+ 4-————9.————+ R

(a) (b)

Fig. 6. Equivalent transformation for a circuit consisting of a lumped

Richards section, an ideal transformer, and a nonuniform transmission

line. (a) Original. (b) Equivalent.

Example 1: This is a circuit consisting of a cascade

connection of a lumped Richards section, an iderd tra&-

former, and a parabolic tapered transmission line. The

characteristic impedance distribution W(x) and the ele-

ments of the chain matrix of the parabolic tapered trans-

mission line are given as follows [6]:

FV(x)=Wom(x)2 (36)

~(~). _&(cosh~+&si&,~) (3’7)

~(~)=%(m(~)(sinh~++cosh~)

1

(

Uox 1
– — cosh —

huo
+ — sinh

1 ho. )1

~ (38)

The above transformation technique may be applied to a

circuit consisting of a lumped imaginary Richards section,

an ideal transformer, and a nonuniform transmission line.

In this case, by using relations (1”1) and (24) and proceed-

ing to the limit of n ~ 00, the element values of the

transformed circuit are obtained as follows:

w(x)
z(x) = —

+(x)’
(43)

1
+(x) = —

. ~9%RoX~ox/0 + B(@i)x/1)
- (44)

j@ORO A(UOX/l) + j& ROC(uox/l)

where W(x) is the characteristic impedance distribution

and A(uox/l), B(tiOx/l), C(tiOx/l), and D(tiOx/l) are

elements of the chain matrix of the original nonuniform

transmission line with the propagation constant UOof (34)

changed to joo. So the equivalent circuit of the nommi-

form transmission line Z(x) in (43) can be obtained as

shown in Fig. 7.

Example 2: This is a circuit consisting of a lumped

imaginary Richards section, an i~deal transformer, and a

parabolic tapered transmission line. In this case, tlhe char-

acteristic impedance distribution 2(x ) of the nonuniform

transmission line obtained after transformation is given as

follows:

()
(JOX 1 (70X

c~= sinh —
worn(x) 1

(39)

()

cr~x rrox 1 Uox
D— =m(x)cosh —–—sinh — (40)

1 1 ho. 1

where h is the taper coefficient of the parabolic tapered

transmission line. The characteristic impedance distribu-

tion Z(x) of the newly obtained nonuniform transmission

line is given as

(46)

Using this transformation the above operation may be

carried out repeatedly. Exact network functions for a class

of nonuniform transmission lines, of which the characteris-

tic impedance distribution is represented by a hyperbolic

function or a trigonometric function, are derived succes-

sively. In the case of these characteristic impedance distri-

butions, it is very difficult to obtain the solution from the

telegraph equation. However, wsing this method, exact

solutions can be simply determined, and the new technique

is useful for analyzing nonuniform transmission lines. It is

pointed out that ,whenever the nLlmber of equiv~ent tr~s-

Z(x)=wo

i

Cos’f+(++%)sinh:
(@em(x)+

1’02 “f)cOsh~+(*m(x)-* -@o~o%diA~ 2 ’41)@oRoh U.
L

(42)
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Fig. 7. Equivalent circuit of nonuniform transmission line Z(x) in (43).

formations is increased, the number of free parameters

increases.

IV. CONCLUSIONS

Using a new analysis method for nonuniform transmis-

sion lines, we have shown equivalent transformations for

mixed lumped and distributed circuits. First, we showed

an equivalent transformation for a circuit-consisting of a

cascade connection of a distributed Richards section, an

ideal transformer, and a unit element. This was followed

by an equivalent transformation for a mixed lumped

Richards section, an ideal transformer, and a unit element.

The transformation was then applied to a circuit contain-

ing an imaginary gyrator, and another type of nonuniform

transmission line was obtained. Finally a similar transfor-

mation was applied to a circuit consisting of a lumped

Richards section and a nonuniform transmission line. Ex-

act network functions of a class of nonuniform transmis-

i.on lines were obtained.
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