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Equivalent Transformations for the Mixed
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Abstract —Introducing a new analysis method for the nonuniform trans-
mission line, this paper shows equivalent transformations between a circuit
consisting of a cascade connection of a lumped Richards section, an ideal
transformer, and a distributed transmission line and one consisting of a
cascade connection of a class of a nonuniform transmission line, a lumped
Richards section, and an ideal transformer. Characteristic impedance
distributions of these nonuniform transmission lines are expressed as
hyperbolic or trigonometric functions. It is quite difficult to find the exact
network functions of nonuniform transmission lines from the telegraph
equation, but by using the equivalent transformation described it becomes
possible to obtain exact network functions of a class of nonuniform
transmission lines.

I. INTRODUCTION

REVIOUSLY a powerful analysis method for nonuni-
form transmission lines was used to derive equivalent

transformations for mixed lumped and distributed circuits

[5]-18]. This paper shows a new type of equivalent trans-
formation. First we show an equivalent transformation for
a circuit consisting of a cascade connection of a distributed
Richards section, an ideal transformer, and a uniform
transmission line (unit element). By applying this equiv-
alent transformation n times and considering the limiting
case of n — oo, the transformed circuit consists of a cascade
connection of a nonuniform transmission line, a lumped
Richards section, and an ideal transformer. The character-
istic impedance distribution of this nonuniform transmis-
sion line is expressed as a hyperbolic function of distance
x. Then, we apply this technique to a circuit containing an
imaginary instead of a real gyrator, and obtain the equiv-
alent circuit of another type of nonuniform transmission
line whose characteristic impedance distribution is ex-
pressed as a trigonometric function of distance x. Next, we
treat the equivalent transformation of a circuit consisting
of a lumped Richards section and a nonuniform transmis-
sion line. Characteristic impedance distributions of the
newly obtained nonuniform transmission lines are ex-
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pressed as a function of the characteristic impedance dis-
tribution and the elements of the chain matrix (4, B, C, D)
of the original nonuniform transmission line. By using
these equivalent transformations, exact network functions
of a class of nonuniform transmission lines can be ob-
tained without solving the telegraph equation.

1I. EQUIVALENT TRANSFORMATION FOR A LUMPED
RICHARDS SECTION AND A UNIFORM
TRANSMISSION LINE

The Richards section is one of the important circuits for
cascade network synthesis [9]. [n the case of distributed
circuits, the distributed Richards section is constructed of
a gyrator and a single shorted stub, and its chain matrix is
given as follows:

1 Ro

[F]=— (1)
20 2

| Ry ©

- Qs

where R, is the gyration ratio of the gyrator, R, /¢ is the
characteristic impedance of the single shorted stub, and p
is the Richards variable.

We consider a circuit consisting of a cascade connection
of a distributed Richards section, an ideal transformer,
and a unit element, shown in Fig. 1(a), where W}, is the
characteristic impedance of the unit element and ¢, is the
turns ratio of the ideal transformer. The distributed
Richards section can be transformed to the output port as
shown in Fig. 1(b). The formulas for this transformation
are given as follows:

RO(WO+ crqs(Z)RO)
e oW, + 4’(2)R0

)

o= Wo("Wo'*‘P(Z)Ro)
! ¢0R0(Wo"’°¢%Ro)

(3)

R — $3R3(W, + okaR,)
Y Wo(oW, + $5R,)

(4)
()

0,=o0.
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(a) (b)
Equivalent transformation for distributed Richards section. (a)
Original. (b) Equivalent.

Fig. 1.

Fig. 2. N-times equivalent transformations. (a) Original. (b) Equivalent.

This transformation can be applied » times (n an in-
teger) to the circuit shown in Fig. 2(a), where the line
lengths of the unit elements and the single shorted stub are
[ /n. The transformed circuit is one consisting of a cascade
connection of cascaded transmission lines, the distributed
Richards section, and an ideal transformer as shown in
Fig. 2(b).

The characteristic impedance Z, of a unit element and
the element values of the circuit transformed the ith time
are given as follows:

Wo

Z = j=1,2,---, 6
. (i n) (6)
Wo
# g0k,
(1+0)' +(1-0) ) (1+6)' —(1-0)"
‘ 2 00 2 0
(1+0¢) +(1-0) (1+0) —(1-0)
2 0 2 %R,
(7)
¢OR0
R = . 8
- ®)

By considering the limiting case of the above transfor-
mation (n — o0), we can discuss the equivalent transforma-

TABLEI
EQUIVALENT TRANSFORMATION FOR THE CIRCUIT CONSISTING OF
LUMPED RICHARDS SECTION, IDEAL TRANSFORMER,
AND UNIFORM TRANSMISSION LINE

Original Circuit Bquivalent Circuit

tion for the mixed lumped and distributed circuit [5]-[8].
Set
[of
o=—. )
n
By proceeding to the limit » — oo, the driving point im-
pedance of the single shorted stub shown in Fig. 2(a) yields

( R, Bl) R,
j—tan— | = j—
4 n

Ry 1
pl=j——w (10)
o, oy U

Z,= lim

n—o0o

where 8 is the phase constant, w is the angular frequency,
and v is the velocity of light; i.e., the single shorted stub
becomes a lumped inductor. The coordinate x of the ith
unit element of the transformed circuit is given as follows:

(11)

By substituting (9) and (11) into (6) and (7), we obtain
the following relations as n — oo

i
=— i=1,2,-+,n).
x=- (i n)

5 0pX . Ogx
W, ¢5 R, cosh e + W, sinh —

lim ¢, = ‘ (7% 5ox = 9(x)
moe PRy Wocosh—%—+¢%RosinhoT
(12)
2
. Wo (9oRo)
lim Z,= 5 =
noew o ¢(x) W
04X .. Opx \2
W,cosh — + ¢2 R, sinh —
I i _
2 %3 — OpX =Z(x).
¢5 R cosh e + W, sinh e

(13)
Z(x) is the characteristic impedance distribution of the
nonuniform transmission line derived. That is, if the trans-
formation shown in Fig. 1 is applied » times as n — o0, the
characteristic impedance distribution of the transformed
circuit transforms from a discrete function of distance x
into a continuous function. Under these conditions the
element values of the Richards section of the transformed
circuit become

¢=¢(x)|x=l (14)
R= %:0. (15)

In the limiting case we obtain the equivalent transforma-
tion shown in Table I. By using this we can show the
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2 >
Z(x)

Fig. 3. Equivalent circvit of nonuniform transmission line Z(x) in (13). (2) Nonuniform transmission line. (b) Equivalent
circuit.

equivalent circuit of a nonuniform transmission line Z(x) in (13) as shown in Fig. 3. Network functions of this
nonuniform transmission line can be easily obtained from the equivalent circuit. The chain matrix is given as follows:

. ,
|4 B|___~ 4 F
[E]_[C D] s [P Z[C' D’] (16)
R
l
$ o [ R W, a0 \2
A’=s2;;cosﬂl+js—(;— _W:_q%z(z)o sinﬁz—(—"l—) cos Bl (17)
B 2 gt s 2 (R = Ry)cos i j{ 2 RIS 18
= js ¢0¢sn S ¢)cospB “]< ; ) W, sin 8 (18)
$od o [ 1 1 ov\2 W,
C'=js2——sm,81+s—(-——~—— cos,Bl—j(——) sin 81 (19)
W, I \R ™R, I ) #R3
o | W, 2R 0,0 \2
D’=s2%cosﬁl+js—;— ;%— ¢;VO sin,Bl—(%) cos ! (20)
0

where s is the complex angular frequency.

The above transformation technique may also be applied to a circuit that has the same topology as that of Fig. 2 but
with the real gyrator R, and o changed to an imaginary gyrator jR, and jew, respectively. In a circuit containing an
imaginary gyrator, a Richards section and an ideal transformer can be transformed to the oufput port by changing the
characteristic impedances of the unit elements. The element values of the transformed circuit are given as follows:

W .
z= °¢ (i=1,2,-+,n) (21)
i—-1%i
1+ jw) +(1= jo)' 1+ jo) - (1- jo)'
W, 2 J$5Ro+ ) 0 ( )
;= S ; ; 7 22
JPoRo (14 jw) +(1- jw)' (1+ jo) =(1—jo)"
) Wo+ ) Jo3Ro
ibo R
jR, =%t (23)
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Fig. 4. Equivalent circuit of nonuniform transmission line Z(x) in (26).

Here, we set

J®o
Jjo=—.
n

By substituting (11) and (24) into (21) and (22) and
proceeding to the limit n — 0o, we obtain

(24)

A ¢0Rocos l +W0s1n—l—
¢(X) = lim ¢1= R WoX
nme P00 Wocos—l—~¢0R0sin——l—-

(25)

Ws
Z(x) = lim Z, = 3
n—> o0 ¢(x)

W WoX R, WX \2

2 — P
_ (%Ro) pCOsS —— ] q&o sin ] (26)
Wo &R cosw + W, sinf)—o—{ .
040 l 0 l

The cascaded transmission lines become nonuniform
transmission lines with characteristic impedance distribu-
tion Z(x).

Under these conditions, the single shorted stubs become
lumped inductors and the element values of the trans-
formed circuit are given by

d=9¢(x)],—, (27)
R= ¢°:°. (28)

Finally we obtain the equivalent circuit of the nonuniform
transmission line Z(x) in (26) as shown in Fig. 4.

IT1. EQUIVALENT TRANSFORMATION FOR A LUMPED
RICHARDS SECTION AND A NONUNIFORM
TRANSMISSION LINE

The circuit consisting of a distributed Richards section,
an ideal transformer, and cascaded transmission lines is
shown in Fig. 5(a). Here we denote the chain matrix of the
cascaded transmission lines as follows:

n 1 L wp
! 1
_p2 | =
1-p W;P

_[4.(p) Bn(p)]

Il

[F]

=1

(29)

CApr) D,(p)
where p is the Richards variable.

% Z %3 by
a3
2/n
(b)
Fig. 5. N-times equivalent transformations. (a) Original. (b) Equivalent.

By applying the equivalent transformation shown in Fig,
1 to this circuit, we obtain the equivalent circuit shown in
Fig. 5(b). Element values of the circuit transformed i
times, shown in Fig. 5(b), are given by

1 ¢0R D,(p)+B(p)

o, = j=1,2,- -,
SRy A(p)*BRC(p)| . ¢ ")
(30)

Z== ! [ = “ve

s (=120 (31)
PRy

R = .

s (32)

Here the turns ratio ¢, of an ideal transformer is expressed
as a function of elements of the chain matrix, with p in
(29) replaced by o.

Then by using (9) and (11) and proceeding to the limit
n — oo, the distributed Richards sections and cascaded
transmission lines of Fig. 5 become equal to the lumped
Richards sections and nonuniform transmission lines
shown in Fig. 6. The characteristic impedance distribution
Z(x) and the element values ¢ and R of the transformed
circuit shown in Fig. 6(b) are obtained as follows:

2(x) - :V(()) (33)
ron(oct)+5()

O ]

o=0¢(x)l,-; R=¢Ro/9 (35)

where A(ayx /1), B(oyx /1), C(oyx /1), and D(oyx /1) are
elements of the chain matrix of the original nonuniform
transmission line.
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(a)

(b)

Fig. 6. Equivalent transformation for a circuit consisting of a lumped
Richards section, an ideal transformer, and a nonuniform transmission
line. (a) Original. (b) Equivalent.

Example 1: This is a circuit consisting of a cascade
connection of a lumped Richards section, an ideal trans-
former, and a parabolic tapered transmission line. The
characteristic impedance distribution W(x) and the ele-
ments of the chain matrix of the parabolic tapered trans-
mission line are given as follows [6]:

w(x) =Wom(x)2

4 Gy h00x+ 1 inh 20 OyX
( l ) m(x) co8 hooSl !

OpX

o 1 0oX
B(—l—) =Wy m(x) smh—l—+———cosh——l—

(36)
(37)

ho,

1 ox 1
= —{cosh XX 4 ~ ginn 2%} (38
g (cosh " o, sin )} (38)

Cos —l— +

hwo
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The above transformation technique may be applied to a
circuit consisting of a lumped imaginary Richards section,
an ideal transformer, and a nonuniform transmission line.
In this case, by using relations (11) and (24) and proceed-
ing to the limit of n— oo, the element values of the
transformed circuit are obtained as follows:

W(x)
x) = 43
Z( ) (X)Z ( )
o(x) = 1 J¢0R D(wox/1)+ B(wyx /1) (44)

JooR, A(‘*’ox/l)‘l' 14’0 oc("-’ox/l)

where W(x) is the characteristic impedance distribution
and A(wyx /1), B(wyx /1), C(wyx /1), and D(wyx /1) are
elements of the chain matrix of the original nonuniform
transmission line with the propagation constant o, of (34)
changed to jw,. So the equivalent circuit of the nonuni-
form transmission line Z(x) in (43) can be obtained as
shown in Fig. 7.

Example 2: This is a circuit consisting of a lumped
imaginary Richards séction, an ideal transformer, and a
parabolic tapered transmission line. In this case, the char-
acteristic impedance distribution Z(x) of the nonuniform
transmission line obtained after transformation is given as
follows:

2

1 ¢0R0) . WoX
I

sm—
Wo

(45)

WoX

W, X
{%m(") doRhw 1] 1

(39)

GoX 0 X
D(—OT—) = m(x)cosh—(}——

ho, sinh =

(40)
where A is the taper coefficient of the parabolic tapered
transmission line. The characteristic impedance distribu-
tion Z(x) of the newly obtained nonuniform transmission
line is given as

|

WoX

—‘—_Q_—E}Sil’l —l——
doRo(hwp)

PR

h W,
(46)

Using this transformation the above operation may be
carried out repeatedly. Exact network functions for a class
of nonuniform transmission lines, of which the characteris-
tic impedance distribution is represented by a hyperbolic
function or a trigonometric function, are derived succes-
sively. In the case of these characteristic impedance distri-
butions, it is very difficult to obtain the solution from the
telegraph equation. However, using this method, exact
solutions can be simply determined, and the new technique
is useful for analyzing nonuniform transmission lines. It is
pointed out that whenever the number of equivalent trans-

GoX 1 3R 0oX 2
cosh — + | — + %020 | o 2°
! hoy, Wy l @
Z(x) =
(x)=w, W, x 0pX W, oo A "~ oox
¢0m(x)+_'—2—"" cosh — + m(x)——_—-________E si
$oRoh’0 1 ! bR, hoy  ¢oR,(hay) !
1 x
YT 42
m(x)= o (@)
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Fig. 7. Equivalent circuit of nonuniform transmission line Z(x) in (43).

formations is increased, the number of free parameters
increases.

IV. CONCLUSIONS

Using a new analysis method for nonuniform transmis-
sion lines, we have shown equivalent transformations for
mixed lumped and distributed circuits. First, we showed
an equivalent transformation for a circuit-consisting of a
cascade connection of a distributed Richards section, an
ideal transformer, and a unit element. This was followed
by an equivalent transformation for a mixed lumped
Richards section, an ideal transformer, and a unit element.
The transformation was then applied to a circuit contain-
ing an imaginary gyrator, and another type of nonuniform
transmission line was obtained. Finally a similar transfor-
mation was applied to a circuit consisting of a lumped
Richards section and a nonuniform transmission line. Ex-
act network functions of a class of nonumform transmis-

ion lines were obtained.
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